
$Revision: 1.4 $ $Author: death $ $Date: 93/04/04 23:45:14 $

ResultObject
INHERITS FROM Object
DECLARED IN ResultObject.h

CLASS DESCRIPTION
ResultObject derives, logically, from the now obsolete classes ErrorInfo and Reply.    The
goal of those two classes was to provide a standard, and hopefully frequently used, way
to get the results of a method call back to the caller.    In the case of ErrorInfo, this meant
to get error codes and descriptive error strings returned.    Reply was a sublcass of
ErrorInfo, and thus provided the previously mentioned error code returns, plus ways to
get data returned as well.    The idea behind them was that objects would return, say, a
Reply object with complete error information as well as any data the caller had
requested.    This made it easier for an object to provde needed data as well as error
information without relying on things like external global variables for error codes, or
what have you.    Put another way, one could now always provide error codes when
returning data without any additional work, thus potentially providing more information
to the caller.    Being objects, there was also room to subclass them and provide even
more specialized and detailed error codes, or to return multiple pieces of non error-
related data at once.    These class proved, however, to be more cumbersome than they

were worth.    In all too many of the cases where one was returned, the programmer
didn't want to deal with checking the error code.    This resulted in cumbersome effortrts
to dispose of the result object as soon as it was returned.    Thus, in a majority of the
cases, an object was created, initalized, filled, returned, and then deallocated, without
even referencing any of the information in the returned object.    The result was
undoubtedly slower code that was considerably harder to read.
The ResultObject class seeks to provide the same services that Reply did, without its
cumbersome aspects.    Rather than having new classes return a Reply or ErrorInfo
object, the class tree is set up so that new classes decend from ResultObject rather than
Object.    ResultObject provides the internal storage to remember error information for
the last method called, as well as storage of data.    Classes decended from ResultObject
can behave normally, and return self or a single data result. Additionally, methods can
store error information, and additional data in the object, and allow the caller to retrieve
it at its conveniance.
ResultObject allows one to store an error code and a textual error string, as well as
several pieces of data (up to five, presently) that might be requested by a caller.    It
recognizes only 7 data types presently: Character, Cstring, Integer, PositiveInteger,
Object, Pointer and Boolean.    Support for ByteString, float types, and others may (or
may not) be forthcomming.    It also provides one standard error code: ERR_OK, which
corresponds to the number 0, and should always be used when no notable errors or
problems occured.
ResultObject has a large set of straightforward methods to set and retrieve result data,
as well as error information. See descriptions below for specific details.
The methods can be divided into two groups: those that store data, and those that
retrieve it.    The methods that store data should be called only by the class decended
from ResultObject.    These methods allow one to store an error code and an error string,
as well as store items of particular data types (e.g. a method to store an Integer).    There

are two sub-sets of methods for storing the data.    One set, the Store¼ methods,
implicitly store their data in the first storage area.    The Put¼:Into: methods store their
data into any of the storage areas. Additionally, there is one method that clears all
waiting stored data.
The methods to retrieving data are much the same as the storage ones.    There is a
method to retrieve an error code, and one to retrieve the error string.    There are a set of
Get¼ methods that always retrieve the data item in the first slot, and a set og
Get¼From: methods to retrieve from arbitrary return positions.
One can check if an error occurred when storing or retrieving a data value by using the
Store and Get MyError methods.
Note that when passed an Integer, Character, PositiveInteger, or Boolean, the object will
always make a copy of the data internally, and copies will always be returned.    Objects
are always stored and returned as pointers; their data is not copied.    For Cstrings, error
strings, and Pointers, the default Store¼ methods will store only references, but there
are Copy¼ methods provided which will copy the referenced data (Note: if the pointer
points to a block that in turn points to other blocks of memory, those secondary blocks
will not be copied).    When retrieved, Pointers are always returned merely as poiners, not
as copies of the data the poiners point to, while CStrings and error strings are always
copied before being returned.   
If an illegal storage area reference is given with a Put method, the data will be ignored,
and no errors will be generated.    If one tries to retrieve a data type that isn't in a
storage area, or to request data from a storage area that doesn't exist, you'll get a null
value returned; the error codes will be modified to reflect this.

INSTANCE VARIABLES
Inherited from Object Class isa;

Declared in ResultObject array of StorageArea ResultVals;
ResultVals Used to store all data values to be returned, as well as

the internal error code, and the error code and text the
subclassing object is returning.

METHOD TYPES
Creating/Initializing, and Freeing- init

- free
Resetting values - ResetResults
Setting Error values - StoreErrorCode:AndText:

- StoreErrorCode:AndCopyOfText:
- StoreMyError:

Retrieving Error values - GetErrorCode
- GetErrorText
- GetMyError

Setting    values - PutInteger:Into:
- PutPositiveInteger:Into:
- PutCharacter:Into:
- PutCstring:Into:
- PutObject:Into:
- PutPointer:Into:
- PutBoolean:Into:
- CopyCString:Into:
- CopyPointer:WithLength:Into:
- StoreInteger:
- StorePositiveInteger:

- StoreCharacter:
- StoreCstring:
- StoreObject:
- StorePointer:
- StoreBoolean:
- CopyCString:
- CopyCString:Into:
- CopyPointer:WithLength:
- CopyPointer:WithLength:Into:
- PutData:WithType:theTypeInto:DoIOwn:

Retrieving    values - GetIntegerFrom:
- GetPositiveIntegerFrom:
- GetCharacterFrom:
- GetCstringFrom:
- GetObjectFrom:
- GetPointerFrom:
- GetBooleanFrom:
- GetInteger
- GetPositiveInteger
- GetCharacter
- GetCstring
- GetObject
- GetPointer
- GetBoolean

- GetDataWithType:From:

CLASS METHODS

none

INSTANCE METHODS

CopyCString:
- (Object) CopyCString: (CString) data

Makes a copy of the specified CString.    This is in constrast to StoreCString: which only
stores a reference to its CString.    Returns self.

CopyCString:Into:
- (Object) CopyCString: (CString) data Into: (Integer) reference

Makes a copy of the specified CString, and stores it in the specified storage area.    This is
in constrast to StoreCString: which only stores a reference to its CString.    Returns self.

CopyPointer:
- (Object) CopyPointer: (Pointer) data WithLength: (PositiveInteger) length

This makes a copy of the specified pointer's data, and stores that. This is in contrast to
StorePointer: which only stores a reference to the data.    Returns self.

CopyPointer:WithLength:Into:
- (Object) CopyPointer: (Pointer) data WithLength: (PositiveInteger) length Into:

(Integer) reference

This makes a copy of the specified pointer's data, and stores a reference to the copy in
the storage area referenced by reference. This is in contrast to StorePointer: which
only stores a reference to the data.    Returns self.

init
- (Object) init
Unsurprisingly, this initalizes a ResultObject object.    It clears the internal variables to
default values, and returns self (all this after having initalized its parent, of course).

free
- free
Disposes of the instance values, freeing those it owns, and then frees the object.

GetBoolean
- (Boolean) GetBoolean
Returns a copy of the Boolean in the first storage area.

GetBooleanFrom:
- (Boolean) GetBooleanFrom: (Integer) reference

Returns a copy of the Boolean in the storage area specified by reference (use the
defined constants from below).

GetCharacter
- (Character) GetCharacter
Returns a copy of the character in the first storage area.

GetCharacterFrom:
- (Character) GetCharacterFrom: (Integer) reference

Returns a copy of the character in the storage area specified by reference (use the

defined constants from below).

GetCString
- (CString) GetCString
Returns a copy of the character in the first storage area.

GetCStringFrom:
- (GetCString) GetCStringFrom: (Integer) reference

Returns a copy of the Cstring in the storage area specified by reference (use the defined
constants from below).

GetDataWithType:From:
- (Generictype) GetDataWithType: (Integer) thetype From: (Integer) reference

Retrieves a data item of type theType from the storage pointed to by reference.    Return
the type as a generic type.    If there is an error, store an error code via StoreMyError:.

GetErrorCode
- (Integer) GetErrorCode
Returns a copy of the error code that the object is currently storing

GetErrorText
- (CString) GetErrorText
Returns a copy of the Cstring in the error text storage area.    Note that this is a full copy
of the string.    One can not obtain a mere reference to it.    One is responsibe for freeing
the text using the usual free() call.

GetInteger
- (Integer) GetInteger
Returns a copy of the Integer in the first storage area.

GetIntegerFrom:
- (Integer) GetIntegerFrom: (Integer) reference

Returns a copy of the Integer in the storage area specified by reference (use the defined
constants from below).

GetMyError
- (Integer) GetMyError
Returns a copy of the error code that was stored while last setting or getting a result.

GetObject
- (Object) GetObject
Returns a copy of the Object in the first storage area.

GetObjectFrom:
- (Object) GetObjectFrom: (Object) reference

Returns a copy of the Object in the storage area specified by reference (use the defined
constants from below).

GetPointer
- (Pointer) GetPointer
Returns a copy of the Pointer in the first storage area.

GetPointerFrom:
- (Pointer) GetPointerFrom: (Pointer) reference

Returns a copy of the Pointer in the storage area specified by reference (use the defined
constants from below).

GetPositiveInteger
- (PositiveInteger) GetPositiveInteger
Returns a copy of the PositiveInteger in the first storage area.

GetPositiveIntegerFrom:
- (PositiveInteger) GetPositiveIntegerFrom: (PositiveInteger) reference

Returns a copy of the PositiveInteger in the storage area specified by reference (use the
defined constants from below).

PutBoolean:Into:
- (Object) PutBoolean: (Boolean) data Into: (Integer) reference

Stores a copy of the Boolean in the storage area specified by reference (use the defined
constants from below).    Returns self.

PutCharacter:Into:
- (Object) PutCharacter: (Character) data Into: (Integer) reference

Store a copy of the character in the storage area specified by reference (use the defined
constants from below). Returns self.

PutCString:Into:

- (Object) PutCString: (Cstring) data Into: (Integer) reference

Stores a reference (pointer) to    the CString in the storage area specified by reference
(use the defined constants from below). Returns self.

PutData:WithType:Into:DoIOwn:
- (Object) PutData: (GenericType) theData WithType: (Integer) theType Into: (Integer)

reference DoIOwn: (Boolean) ownit

Stores the specified data with the specified type into the specified storage area (and
indicate whether we are just pointing tothe data, or if we have our own copy), if possible.    If
it has trouble, an error is stored via StoreMyError:.    Returns self.

PutInteger:Into:
- (Object) PutInteger: (Integer) data Into: (Integer) reference

Stores a copy of the Integer in the storage area specified by reference (use the defined
constants from below). Returns self.

PutObject:Into:
- (Object) PutObject: (Object) data Into: (Integer) reference

Stores a reference (pointer) to    the Object in the storage area specified by reference
(use the defined constants from below). Returns self.

PutPointer:Into:
- (Object) PutPointer: (Pointer) data Into: (Integer) reference

Stores a reference (pointer) to    the Pointer in the storage area specified by reference
(use the defined constants from below). Returns self.

PutPositiveInteger:Into:
- (Object) PutPositiveInteger: (PositiveInteger) data Into: (Integer) reference

Stores a copy of the PositiveInteger in the storage area specified by reference (use the
defined constants from below). Returns self.

ResetResults
- (Object) ResetResults
This clears the error code, error text, and all data items in the storage area.    It returns
self.

StoreErrorCode:AndText:
- (Object) StoreErrorCode: (Integer) code AndText: (CString) text

Stores a copy of the error code, a reference to the error text, and returns self.

StoreErrorText:AndCopyOfText:
- (Object) StoreErrorCode: (Integer) code AndCopyOfText: (CString) text

Stores a copy of the error code, and a copy of the error text, and returns self.

StoreBoolean:
- (Object) StoreBoolean: (Boolean) data

Stores a copy of the Boolean in the first storage area.

StoreCharacter:
- (Object) StoreCharacter: (Character) data

Stores a copy of the character in the first storage area.

StoreCString:
- (Object) StoreCString: (CString) data

Stores a reference (pointer) to the character in the first storage area.

StoreInteger:
- (Object) StoreInteger: (Integer) data

Stores a copy of the Integer in the first storage area.

StoreMyError:
- (Object) StoreMyError: (Integer) errorcode

Stores a copy of the specified error in thestorage area for the internal error.

StoreObject:
- (Object) StoreObject: (Object) data

Stores a reference (pointer) to the Object in the first storage area.

StorePointer:
- (Object) StorePointer: (Pointer) data

Stores a reference (pointer) to the Pointer in the first storage area.

StorePositiveInteger:
- (Object) StorePositiveInteger: (PositiveInteger) data

Stores a copy of the PositiveInteger in the first storage area.

BUGS
There is no way provided to make an actual copy of an object, rather than just copy a
reference.
Dealing with its own errors has not been examined closely, and they may be incomplete.

We are also happy and content to just overwrite any data items already there. (this may be
a feature)
ENHANCEMENT IDEAS

Everything should be collapsed into object types!
The distinction between copying the actual data, and only copying a reference seems a
bit cumbersome, and some way to flatten this should be provided eventually.
Perhaps add a set of Store¼ methods that would automatically store in the next
available storage area?
Make the storage area set a dynamically sized linked list, so that one needn't worry
about running out of storage areas

CONSTANTS AND DEFINED TYPES
/* Types used by ResultObjects */
#define ERR_OK 0
#define ERR_PEACHY 0
#define ERR_ALLISWELL 0
#define ERR_GROOVY 0

#define ERR_NOSUCHAREA -1234
#define ERR_NOSUCHTYPE -1235
#define ERR_CANTSTORE -1236

#define FIRST_RESULT 3
#define SECOND_RESULT 4
#define THIRD_RESULT 5

#define FOURTH_RESULT 6
#define FIFTH_RESULT 7

#define MYERROR_RESULT 0
#define ERRORCODE_RESULT 1
#define ERRORTEXT_RESULT 2

MODIFICATION HISTORY
$Log: ResultObject.rtf,v $Revision 1.4    93/04/04    23:45:14    deathSun Apr    4 23:45:14
PDT 1993Revision 1.3    93/01/10    15:08:46    deathSun Jan 10 15:08:46 PST
1993Revision 1.2    92/07/26    13:59:21    deathUpdate of the result object... (prob no
changes here)Revision 1.1    92/04/27    20:51:47    deathInitial revision
Revision 0.0 92/02/09    14:01:00    death

Use this sample format as you check out future revisons...

